A hypothesis for temporal coding of young and mature granule cells
نویسندگان
چکیده
While it has been hypothesized that adult neurogenesis (NG) plays a role in the encoding of temporal information at long time-scales, the temporal relationship of immature cells to the highly rhythmic network activity of the hippocampus has been largely unexplored. Here, we present a theory for how the activity of immature adult-born granule cells relates to hippocampal oscillations. Our hypothesis is that theta rhythmic (5-10 Hz) excitatory and inhibitory inputs into the hippocampus could differentially affect young and mature granule cells due to differences in intrinsic physiology and synaptic inhibition between the two cell populations. Consequently, immature cell activity may occur at broader ranges of theta phase than the activity of their mature counterparts. We describe how this differential influence on young and mature granule cells could separate the activity of differently aged neurons in a temporal coding regime. Notably, this process could have considerable implications on how the downstream CA3 region interprets the information conveyed by young and mature granule cells. To begin to investigate the phasic behavior of granule cells, we analyzed in vivo recordings of the rat dentate gyrus (DG), observing that the temporal behavior of granule cells with respect to the theta rhythm is different between rats with normal and impaired levels of NG. Specifically, in control animals, granule cells exhibit both strong and weak coupling to the phase of the theta rhythm. In contrast, the distribution of phase relationships in NG-impaired rats is shifted such that they are significantly stronger. These preliminary data support our hypothesis that immature neurons could distinctly affect the temporal dynamics of hippocampal encoding.
منابع مشابه
The Effect of Paxilline on Early Alterations of Electrophysiological Properties of Dentate Gyrus Granule Cells in Pilocarpine-Treated Rats
The dentate gyrus of hippocampus has long been considered as a focal point for studies on mechanisms responsible for the development of temporal lobe epilepsy (TLE). Change in intrinsic properties of dentate gyrus granule cells (GCs) has been considered as an important factor responsible in temporal lobe seizures. In this study, we evaluated the intrinsic properties of GCs, during acute phase o...
متن کاملThe Effect of Paxilline on Early Alterations of Electrophysiological Properties of Dentate Gyrus Granule Cells in Pilocarpine-Treated Rats
The dentate gyrus of hippocampus has long been considered as a focal point for studies on mechanisms responsible for the development of temporal lobe epilepsy (TLE). Change in intrinsic properties of dentate gyrus granule cells (GCs) has been considered as an important factor responsible in temporal lobe seizures. In this study, we evaluated the intrinsic properties of GCs, during acute phase o...
متن کاملStereological Estimation of Granule Cell Number and Purkinje Cell Volume in the Cerebellum of Noise-Exposed Young Rat
In spite of the existing reports on behavioural and biochemical changes related to the cerebellum due to noise stress, not much is known about the effect of noise stress on the neuronal changes in the cerebellum. The present study aims at investigating the effects from one week noise exposure on granule cell number and Purkinje cell volume within the neonate rat cerebellum.15-day-old male Wista...
متن کاملA subtraction mechanism of temporal coding in cerebellar cortex.
The temporally specific learning displayed by the cerebellum facilitates mechanistic analysis of neural timing and temporal coding. We report evidence for a subtraction-like mechanism of temporal coding in cerebellar cortex in which activity in a subset of granule cells specifically codes the interval between the offset of two mossy fiber inputs. In a large-scale cerebellar simulation, cessatio...
متن کاملMaturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse.
The timing of action potentials is an important determinant of information coding in the brain. The shape of the EPSP has a key influence on the temporal precision of spike generation. Here we use dynamic clamp recording and passive neuronal models to study how developmental changes in synaptic conductance waveform and intrinsic membrane properties combine to affect the EPSP and action potentia...
متن کامل